
ERDC MSRC/PET TR/00-35

Using OpenMP and Threaded Libraries to
Parallelize Scientific Applications

by

Daniel Duffy

30 August 2000

10h0022000

Work funded by the DoD High Performance Computing
Modernization Program ERDC
Major Shared Resource Center through

Programming Environment andTraining (PET)

Supported by Contract Number: DAHC94-96-C0002
CSC Nichols

Views, opinions and/or findings contained in this report are those of the author(s) and should not be con-
strued as an official Department of Defense Position, policy, or decision unless so designated by other
official documentation.

Using OpenMP and Threaded Libraries to Parallelize Scienti�c

Applications

Daniel Du�y
Computer Sciences Corporation

U.S. Army Engineer Research and Development Center
Major Shared Resource Center (ERDC MSRC)

3909 Halls Ferry Road
Vicksburg, MS 39180-6199

September 26, 2000

Abstract

As fast as computer processor speed and main memory size increase, scienti�c computing continues to
push the limits of high-end machines. As high performance computers become more sophisticated, so too
do the tools needed to take full advantage of their unique architectures. However, scientists have little
time to explore new and interesting methods of parallel programming. This article describes two ways
in which many current scienti�c applications used in cutting edge research may be modi�ed quickly to
take better advantage of shared-memory machines. OpenMP is a directive level parallelization method
that provides code developers a quick, easy, and eÆcient method of performing independent operations in
parallel. In many cases, changes in the existing code are con�ned to small regions, and most importantly,
portability is retained. OpenMP is applied to two physics-related problems and both algorithms and
timings are shown when running the codes on di�erent numbers of processors. Finally, the results of
solving a linear system of equations using a vendor speci�c threaded library are discussed. Timings for
di�erent numbers of unknowns are shown along with approximate Mop/s (millions of oating point
instructions per second) rates to show the e�ectiveness of using such routines.

1 Introduction

As computer architectures become more sophisticated both in hardware and software, the use of massively
parallel high performance computers (HPCs) in scienti�c research, especially chemistry and physics, has
increased dramatically. From the workstation to the vector supercomputer to new classes of HPCs, com-
putational scientists have utilized whatever hardware was available to them. As the capabilities of these
machines become greater, scienti�c research will continue to develop and solve larger, more complex prob-
lems.

Currently, there is an emerging class of parallel HPCs that, in several ways, are ideal for many scienti�c
applications. These new machines are based on clusters of shared-memory processors. An excellent example
of this type of machine is the SGI Origin 2000, which can be further described as a cache coherent non-
uniform memory access (cc-NUMA) architecture.[1] On the Origin, two central processing units (CPUs) are
connected to a shared local memory space on a single node1 (see Fig. 1 for a schematic diagram of a node).
Each processor can read and write to the shared-memory on the node such that an immediate change of a
value in memory is accessible to the second CPU on that node. On the Origin, this memory access does not
stop for a single node, rather memory is shared across all the nodes. Still, there is a latency associated with
accessing memory that is not on the local node, thereby creating a hierarchy of memory access speeds (i.e.,
NUMA).

1The next generation SGI Origin 3000 series can contain two or four CPUs per node (or brick) and can be con�gured up to
512 processors.

1

2

R10K R10K

I/O

L2

Local Node
Memory

HUBHUB

CacheCache
L2

Figure 1: A simpli�ed schematic diagram of a single node on the Origin 2000 showing the shared local
memory for the two R10K processors within the node. Each processor also has its own L2 Cache and is
connected to the Hub in order to perform input/output operations or communicate with other processors.

A second example is the IBM Power3 series HPC where a single node can contain up to 32 processors.
Again, processors within a node have a shared-memory space, but explicit message-passing techniques must
be used to share data across nodes. These distributed shared-memory hybrids lend themselves to program-
matic techniques designed for both distributed and shared-memory architectures. From this, a new type of
computing paradigm has emerged that uses a dual-level type of parallelism in applications.[2, 3]

In this article, the bene�ts of using OpenMP, a set of compiler directives and functions, to parallelize
physics-type applications are discussed. An introduction to OpenMP focusing only on the loop-level parallel
do statement is included with an emphasis on its ease of use. Example programs will be shown along
with various timings and speedup analysis. Furthermore, a new framework of programming using dual-level
parallelization is introduced and applied to a physics code used to calculate quasiparticle scattering rates.
Finally, a short discussion on some issues of using threads and threaded libraries is included.

The machine used for the timings reported is the Origin 2000 at the U.S. Army Engineer Research and
Development Center Major Shared Resource Center (ERDC MSRC), part of the DoD High Performance
Computing Modernization Program.2 This machine contains the MIPS 195 MHz R10K chip capable of
two oating point operations per cycle giving a theoretical peak of 390 Mop/s (millions of oating point
operations per second). The programming language used in the examples is Fortran 77. In general, OpenMP
is applicable to Fortran 90, C, and even C++ on some platforms.

2 Introduction to OpenMP

OpenMP is a collection of compiler directives and library routines that, together with the setting of environ-
ment variables, provide the programmer with an easy interface to the bene�ts of shared-memory parallelism.
Under the OpenMP Fortran Application Program Interface (API),[4] a speci�cation of standards has been
developed to which every implementation of OpenMP should comply.3 Hence, any existing portable code
written to include OpenMP directives will retain its portability across architectures.

OpenMP compiler directives are structured as Fortran comments, written as c$OMP or !$OMP, or
preprocessor directives in C, written with the #pragma OMP. These directives, of course, are only included
in the compilation when the appropriate compile line ags are set. Thus, the same code may be used with and
without OpenMP; a capability that may be important, for example, when sharing codes with collaborators

2For more information about ERDC, visit the Web site at http://www.wes.hpc.mil, and for more information about the
High Performance Computing Modernization Program go to http://www.hpcmo.hpc.mil.

3Of course, one must make sure that their OpenMP application is compliant to the standards. When in doubt, ask your
system administrator. If it is not fully compliant, make sure you understand what it is doing before using it.

3

c$OMP parallel do [clause[[,] clause]...]
do loop

block of statements
end do

c$OMP end parallel do

Common clauses:
private(variable list)
shared(variable list)
reduction(foperatorintrinsicg:list)
schedule(type[,chunk])

Figure 2: Parallel do construct with common clauses or options.

who may not be able to use OpenMP or when running on a distributed memory architecture.4

An OpenMP program starts out as a single process, called the master thread. When a parallel region
is encountered, OpenMP forks light weight processes called threads to carry out the execution of a set of
statements enclosed within a parallel construct. On shared-memory machines, the threads are placed on
their own processor and parallel execution of the code takes place.5 At the end of the parallel extent, the
threads synchronize and only the master thread remains to continue execution of the program.

It is possible to use OpenMP directives in many places within a single code, thereby creating a situation
where threads may be forked and joined many times throughout execution. Depending on the application
and machine, this may be an undesirable situation. If the time cost of creating and destroying threads is
comparable to the time of execution of the statements within the parallel region, linear speedup will not be
obtained. On many machines, there are environment variables that will allow the user to specify whether
threads are destroyed or kept in a sleep state waiting for the next parallel region.

Perhaps the most common and e�ective statement in OpenMP is the loop-level parallel do construct. Its
usage along with several of its most common options are shown in Fig. 2. In order to help explain the usage
of this directive and its options, a classic algorithm to compute � from the integral

�

4
=

Z
1

0

dx

1 + x2
(1)

is shown in Fig. 3(a). A loop over the user-speci�ed number of iterations, max steps, varies x from 0 to 1
while summing up the integrand. Finally, the integrand is multiplied by a factor of 4 to obtain a �nal value
for �.

Figure 3(b) shows the same code fragment used to compute � with the inclusion of OpenMP directives
to perform this loop in parallel. When compiled with the OpenMP options turned on, a set of threads will
be created to perform the work done inside the loop. For this particular case, each iteration is independent
making it a rather obvious candidate for parallelization.

Three clauses for the parallel do directive have been included in this example. Note that the entire
OpenMP parallel do statement only a�ects the Fortran do loop immediately following. Furthermore, the
statement has been broken up across lines using the usual Fortran 77 convention of a continuation character
in the 6th column. Within Fortran 90, the pre�x would be replaced with !$OMP and the usual syntax for
line continuation would apply.

The private clause declares the list of variables considered to be local or private to a thread within the
parallel extent. For the algorithm shown in Fig. 3(b), each light-weight process would then create a local
variable named i and x than can only be accessed by the thread that owns that stack space. Loop variables

4One is tempted to include debugging as a good reason to be able to turn OpenMP on and o�. However, an OpenMP
application with only one thread should be the same as the original code. Only when two or more threads are used do the
strange errors caused by parallel codes creep into play.

5Don't always assume that the thread will be bound to a unique processor. You may need to convince yourself that this is
happening by running some tests on the machine you are planning to use.

4

 x = i*dx

pi = 4.0*sum

(a)

end do

sum = 0.0
dx = 1.0/max_steps

do i = 1,max_steps

 sum = sum + 1.0/(1.0+x*x)
 x = i*dx

end do
 sum = sum + 1.0/(1.0+x*x)

do i = 1,max_steps

(b)

pi = 4.0*sum

c$OMP end parallel do

 reduction(+:sum)c$OMP&
c$OMP&
c$OMP&
c$OMP

sum = 0.0

 private(i,x)
parallel do

 shared(max_steps,dx)

dx = 1.0/max_steps

Figure 3: (a) Algorithm to compute � from Eq. 1. (b) The same algorithmwith OpenMP directives included.

must be private and need not appear in any declaration statement of the parallel extent; even so, it is always
good practice to explicitly declare loop variables in a private clause.

Complimentary to the private clause, a list of variables to be shared can also be speci�ed. Changes
to shared variables are reected across, and immediately accessible by, all the threads working on a single
problem. By default, variables are declared to be shared.

The next clause is a bit more complicated. Since the integrand within a thread and across threads needs
to be summed up, OpenMP has a reduction clause that automates this for the user. A private copy of
the variable sum is created for each thread and initialized to zero. After all the threads have �nished, all
the private sums along with the global sum are then reduced using whatever operation de�ned within the
reduction clause (in this case it is a \+"). A variety of other operators can be used in a reduction statement
to create a product or �nd the minimum or maximum of a set of numbers for example.

Table 1 shows the execution times for various numbers of threads for max steps = 108. An almost linear
speedup is seen as the number of processors increase from 1 up to 8. Although this may be a trivial example,
it shows the power and ease of use of OpenMP directives.

Within a parallel do loop, each thread does a speci�c number of loop iterations independently of one
another and no iteration is duplicated. OpenMP must therefore have some way to parcel out, or schedule,
which iterations are performed on each thread. Thus, the schedule clause is used to specify how the loop
iterations are to be divided between threads. In the above example, OpenMP distributed the loop iterations
automatically using the default schedule type. To further explain the di�erent types of schedulings, assume
that max steps = 1000 and that 4 threads are used. Then, the default schedule, called static, simply breaks
up the 1000 iterations evenly between threads so that each thread gets 250 iterations, i.e., thread 0 performs
i = 1 : : : 250, thread 1 performs i = 251 : : :500, etc.

As shown in the usage (see Fig. 2), a chunk size can be speci�ed by the user. A chunk is just the number
of iterations to be given out to each thread; the chunk size in our example with 1000 iterations and 4 threads
is 250. Suppose a static schedule is used with a chunk size of only 100; what iterations are performed on each
of the 4 threads? For this case, thread 0 would perform iterations 1..100, 501..500, and 801..900. Meanwhile,
thread 3 would only perform iterations 301..400 and 701..800. Hence, the load across all the threads would
not be well balanced. The issue of a good load balance across all threads is extremely important since the
resulting code is only as fast as its slowest thread.

Another type of scheduling that can be extremely useful when the load balance is not known in advance
is dynamic. For this case, a user-speci�ed chunk size is given out to all the threads at �rst. Whichever
thread gets done with its iterations �rst immediately gets the chunk of iterations. Therefore, if the �rst
few iterations of a loop take longer than the rest, a better load balance might be obtained using dynamic
scheduling. One other type of scheduling is guided, which is much like the dynamic; but in this case, the
chunk size can also change dynamically in order to better obtain load balancing.

In this section, the focus has been only on one user-supplied directive within OpenMP, namely the parallel

5

do directive. Many other capabilities exist and should be explored by the programmer to see if bene�ts might
be found in other parts of the code other than just at the loop level. It is left up to the programmer to check
for data dependencies, deadlocks, or other common bugs that occur in parallel environments. Some vendors
have supplied compilers that will automatically include OpenMP directives into a user's code. Automatically
including directives while checking for data dependencies is a nontrivial problem, and to date, automatic
parallelization is much less sophisticated than most anything the developer of a code would include.6

3 Dual-Level Parallelism

Currently, many applications have already been parallelized at some coarse level using Message Passing
Interface (MPI).[6] Further parallelization at some �ner level would require a large overhaul and signi�cant
time coding and debugging. More than likely though, computationally intense areas of the code still exist to
which OpenMP could be applied to further take advantage of the shared-memory architecture. This dual-
level parallelism method has been applied with much success to existing MPI codes to obtain substantial
increases in both resolution and turn around time without a large amount of code modi�cation.[2] In this
section, this dual-level parallel method is applied to an existing physics code, and some wall clock times are
shown to demonstrate the e�ectiveness of the method.

The problem being solved is the calculation of the quasiparticle (q.p.) lifetimes for both s- and d-wave
gaps.[7] Using a Hubbard model on a two-dimensional lattice with onsite repulsion and multiple hopping
amplitudes, the spin-uctuation interaction is calculated within a random phase approximation.[8] The
calculation of the susceptibility involves a two-dimensional integral over the Brillion zone. Due to the
interest in the low temperature results, �nite size lattice e�ects become very important. Typically, lattice
sizes on the order of 128� 128 and 256� 256 are needed to avoid any such �nite size problems.

A simpli�ed algorithm for the q.p. code is shown in Fig. 4(a) where num temperatures is the number of
independent temperatures and L is the lattice size. Since each temperature can be computed independently
of the others, it is straightforward to use this as the coarse level of parallelism and implement a distributed
program using MPI.

However, even with the use of symmetries that reduces the total number of steps in computing the
susceptibility (i.e., the loop over kx and ky), the calculation of the integral is computationally intensive.
Noting that for each value of kx and ky the integrand is independent, OpenMP directives were applied
to the outer kx loop to implement the dual-level parallel method, see Fig. 4(b). The total source code
modi�cation took a very short amount of time (less than an hour) with the most diÆcult task being the
correct declaration of private and shared variables.

6Users should not ignore the automatic parallelization capabilities of their compilers. Just do not be surprised if there is
little or no speedup.

Table 1: A comparison of the execution times to compute � using the algorithm found in Fig. 3 with
max steps = 108. NT is the number of threads used, and all the times are in seconds. The speedup is the
ratio of the time for a single processor to the time for NT processors.

NT Time (secs) Speedup

1 107.85 1.00
2 53.90 2.00
3 37.09 2.91
4 26.98 3.99
5 21.71 4.97
6 18.84 5.72
7 15.83 6.81
8 13.52 7.98

6

Compute the susceptibility.c

c Compute the scattering rate.

end do

do i = 1,num_temperatures
(a)

do kx = 0,L
 do ky = 0,L
 sum up the integral
 end do
end do

do some final work
print out results

c Compute the susceptibility.

print out results
do some final work

c$OMP

(b)
do i = 1,num_temperatures

end do

Compute the scattering rate.c

end parallel do
end do

parallel do

c$OMP&
c$OMP&
c$OMP&
c$OMP

shared(list of variables)

 end do
 sum up the integral
 do ky = 0,L
do kx = 0,L

reduction(+:integrand)
private(list of variables)

Figure 4: (a) Algorithm to compute the susceptibility used in the calculation of the lifetimes of quasiparticles
in a random phase approximation for a superconductor. (b) The same algorithm with OpenMP directives
included.

Table 2: A comparison of the execution times of a code to compute the quasiparticle scattering rate using a
mixed mode of MPI and OpenMP on a 128� 128 lattice. NP is the number of MPI processes used, while
NT is the number of threads per MPI process. Hence, the total number of CPUs used for each calculation
would be NP*NT. All times are in minutes, and the speedup with respect to the time of one CPU is shown
in parentheses.

NT
NP 1 4 8

1 146.2 (1.0) 47.3 (3.1) 29.1 (5.0)
4 41.1 (3.6) 13.1 (4.2) 8.0 (11.3)
8 22.8 (6.4) 7.3 (20.0) 4.4 (33.1)

Table 2 shows the results of wall clock times when this method is applied to a 128�128 lattice. The times
are in minutes, so a single-processor job running 24 independent temperatures took 2.44 hours. Meanwhile,
breaking the job up into 8 independent MPI processes, each computing 3 independent temperatures, took
about 23 minutes. By spawning threads, the wall clock time decreases to only 4.4 minutes using a total of
64 CPUs.

The speedup is not entirely linear, nor should that be expected. As with all parallel programs, any piece
of the code that must be run in serial will eventually dominate the execution time and become a bottleneck.
Since only the loop that computes the integral for the susceptibility is parallelized using OpenMP, an ideal
speedup is not expected.[9] However, since the total code modi�cation from the MPI code to the mixed MPI
plus OpenMP code was only about 10 source lines taking less than an hour to implement and debug, the
bene�ts are obvious. The turn around time has gone from over two hours to a few minutes while maintaining
the portability of the code.7

7This is assuming you have access to a machine in which you can immediately submit and have your job running. Like most
researchers, the amount of time spent in the queue is an important consideration. A 64-processor job is going to sit in the
queue substantially longer than a 16-processor job. Hence, the users of the code must make their best judgement about the
number of MPI process and threads to throw at a single problem.

7

4 Other OpenMP Capabilities

Through the setting of environment variables, namely OMP NUM THREADS on the Origin 2000, and by using
prede�ned functions within OpenMP, the number of threads can be set before a job is run without having
to recompile. Some implementations of OpenMP even allow the dynamic setting of the number of threads
within a code, and hence the number of threads can vary during execution based on, for example, the
amount of computational work. Furthermore, OpenMP includes routines to allow code developers access to
the number of threads and their unique identi�er. Since every thread within a single MPI process has the
same MPI identi�er, knowing the thread identi�er is quite important.

OpenMP allows much more than just loop level parallelism; in fact, the parallel do construct is just a
special case of the more general parallel construct. By creating a parallel extent within a program, OpenMP
has several features to control the ow of execution of code to threads. For example, a sections directive
de�nes blocks of statements to be executed by di�erent threads. This type of situation might occur when
tracking particles where calculations in the x̂, ŷ, or ẑ direction are independent of the others and can be
performed simultaneously.

Many times throughout a piece of code, speci�c statements should be executed by only a single thread at
a time. OpenMP allows blocks of the code to be executed either by a single thread or by the master thread.
For example, such a section of code may be used to print out data to a �le or increment some counter of
events.

Finally, as with any parallel program, synchronization is extremely important. At the end of many parallel
directives in OpenMP, an implied barrier is mandated. However, this can be controlled by the programmer
using a nowait clause, or for that matter, a speci�c barrier may be used to ensure the synchronization of
threads.

OpenMP is a rich and e�ective method for exploiting shared-memory machines. The well written manual
found at the OpenMP Web site can be read in a short time with many of the features immediately applicable
to most scienti�c codes.[4] With the guarantee of a standard, the inclusion of OpenMP into an application
will remain portable. Further, with the extensive use of HPCs and their increasing popularity, the knowledge
of parallel programming is a must for scienti�c computing.

5 Threaded Libraries

As a �nal example of the usefulness of threads, typical library routines found on most HPCs and workstations,
namely the Basic Linear Algebra Subprograms (BLAS)[10] and the LINPACK library[5] used to solve linear
equations and more, are discussed. These routines contain the usual linear algebra functions to perform
vector-vector, vector-matrix, and matrix-matrix computations and can be downloaded from a variety of
places on the Web. Furthermore, most vendors include a version of these routines in the system libraries
that have been speci�cally tuned to the machine's hardware. Generally, without a large amount of work
from the developer of a code, the speed of the vendor's implementation is the fastest. Hence, although it may
require some work to �nd out how to link and call the appropriate routines from the BLAS and LINPACK
libraries on any given machine, the bene�ts far outweigh the cost in time.

As an example, a set of equations given by the usual formula Ax = B where A is a real m �m matrix
whose size can be varied easily is solved. Using the sgefa LINPACK routine, the real matrix will be factored
using Gaussian elimination. The factors computed will then be given to the sgesl LINPACK routine to
solve for the set of equations and return the solution of x in the array holding B. As in benchmarking
exercises with LINPACK,[11] both the time of execution for di�erent size matrices as well as a Mop/s will
be reported for three di�erent implementations of the BLAS and LINPACK routines.

The �rst includes the actual source of the Gaussian elimination and factor procedure along with any
dependencies into the code. Second, the vendor-supplied routines on the Origin 2000 are used by linking
with the complib.sgimath library. Finally, following the spirit of this article, the vendor-supplied threaded
routines are employed to solve the set of equations in parallel by linking with the complib.sgimath mp library.
All versions are compiled using level 3 optimization.

Table 3 shows the results for two sizes of matrix on a single processor of the Origin 2000 (recall that
the theoretical peak speed of this processor is 390 Mop/s). Including the source code and compiling with
-O3 optimization results in a Mop/s rate that is about 6% of peak, whereas the vendor-supplied highly

8

Table 3: A comparison of the execution times to solve a general, real linear system of equations using both
source code for the BLAS routines included into the code and the proprietary BLAS library on the Origin
2000. Times, in seconds, are shown for both a 1000� 1000 and 5000� 5000 matrix along with the Mop/s
rate.

Included Source Vendor Library
Matrix Size time Mop/s time Mop/s

1,000 27.7 24.1 2.0 327.8
5,000 4900 17.0 267.4 310.1

optimized routine results in a Mop/s rate around 80% of peak. The bene�t of using the vendor-supplied
libraries is extremely good for this particular set of routines, especially for the larger size matrix. Using the
vendor-supplied routines decreased the run time from 1.36 hours to about 4.5 minutes for the 5000� 5000
matrix. Other library routines may not perform as well, but they are de�nitely worth learning about and
using.

Table 4 shows the results for the threaded libraries supplied by the vendor. The large linear system
that required approximately 4.5 minutes on a single processor can now be solved in 35 seconds using eight
processors. More than likely, the vendors are not using OpenMP to thread their routines, but the results are
so dramatic that a discussion of these issues is not out of place. Note that the initial speedup in this case is
almost linear but tends to fall o� as the number of processors is increased. Given a speci�ed problem size,
this is to be expected; the size of the matrix to which each processor is supplied gets smaller as the number
of processors increases.

In general, code that contains vendor speci�c routines is not immediately portable between platforms.
Moving a code between di�erent HPCs is in many cases nontrivial, and the same routines used to solve a
problem may not only be named di�erently but their calling sequence may also change. Even so, the results
shown above should be encouraging enough even for casual programmers to consider the use of vendor speci�c
routines.

6 Conclusions

In conclusion, the use of threads either via OpenMP or from vendor-supplied libraries is a worthwhile
undertaking for anyone doing computational research. OpenMP allows the developers of the code an easy
and quick method of bene�ting from the shared-memory architectures that are becoming more popular.
With minimal e�ort both in learning about OpenMP and coding into an application, more processors can

Table 4: Using the vendor-supplied parallel BLAS routines, the following execution times and Mop/s where
found on the Origin 2000 for a 5000�5000 matrix using a di�erent number of threads, NT. The �nal column
shows the Mop/s rate per thread or in this case per CPU. All times are in seconds, and the speedup is the
ratio of time for one process to the time for multiple processes.

NT time (speedup) Total Mop/s Mop/s/CPU

1 262.3 (1.00) 315.7 315.7
2 124.5 (2.11) 666.0 333.0
3 86.8 (3.00) 954.6 318.2
4 66.1 (3.97) 1253.0 313.2
5 53.2 (4.93) 1555.0 311.0
6 46.1 (5.69) 1792.0 298.7
7 41.9 (6.26) 1965.0 280.7
8 35.0 (7.49) 2348.0 293.5

9

be used to attack the problem and speed up the turn around time. Furthermore, the code, either serial or
MPI, maintains its portability across architectures.

Compilers are becoming more sophisticated all the time as vendors see the need to focus their attention
on such issues as OpenMP and automatic parallelization. Further, tools are being developed commer-
cially that move beyond compilers into assurance testers for data dependencies and parallel bottlenecks and
deadlocks.[12]

In many cases, threads do not result in a straight ideal (linear) speedup for a variety of reasons, some
of which have already been mentioned. Making data local to a process is an extremely important factor in
whether or not linear speedup is obtained. A study of cache misses may reveal much about the locality of
data within a thread. Regardless of all the pitfalls that are inherent in parallel programming environments,
OpenMP gives scientists a way to parallelize their codes without taking too much time away from the really
important issues: science.

Acknowledgments

The author would like to thank the following people for their useful conversations and suggestions: M.R. Fa-
hey, R. Fahey, T. Oppe, W. Ward, N. Prewitt, W. Mastin, and C. Cuicchi. This work was supported in part
by a grant of computer time from the Department of Defense High Performance Computing Modernization
Program at the ERDC MSRC, Vicksburg, MS.

References

[1] K. Dowd and C. Severance, High Performance Computing, O'Reilly and Associates: Sebastopol, CA
(1998).

[2] S. Bova, C. Breshears, R. Eigenmann, H. Gabb, G. Gaertner, B. Kuhn, B. Magro, S. Salvini, and
V. Vatsa, \Combining message-passing and directives in parallel applications," SIAM News 32 (1999).

[3] S.W. Bova, C.P. Breshears, C.E. Cuicchi, Z. Demirbilek, and H.A. Gabb, \Dual-Level Parallel Analysis
of Harbor Wave Response Using MPI and OpenMP," The International Journal of High Performance
Computing Applications, 14, 49 (Spring, 2000).

[4] OpenMP Fortran Application Program Interface, Version 1.0, OpenMP Architecture Review Board
(1997). Available online at http://www.openmp.org.

[5] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum,
S. Hammarling, A. McKenney, and D. Sorensen, LAPACK Users' Guide, Third Edition, SIAM, Philadel-
phia (1999).

[6] M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and J. Dongarra. MPI-The Complete Reference: Vol. 1.

The MPI Core. 2nd Ed. Cambridge: MIT Press (1998).

[7] S.M. Quinlan, D.J. Scalapino and N. Bulut, Superconducting quasiparticle lifetimes due to spin-uctuation

scattering, Phys. Rev. B 49, 1470 (1994).

[8] D. Du�y, D.J. Scalapino, and P. Hirshfeld in preparation.

[9] Ian Foster, Designing and Building Parallel Programs, Addison-Wesley (1995).

[10] J.J. Dongarra, J. Du Croz, S. Hammarling, and R.J. Hanson, \An extended set of FORTRAN Basic
Linear Algebra Subprograms," ACM Trans. Math. Soft. 14 (1988).

[11] J.J. Dongarra, \Performance of Various Computers Using Standard Linear Equations Software." An
up-to-date version of this report can be found at www.netlib.org.

[12] The best commercial OpenMP package currently available is produced by Kuck and Associates. For
more information, go to their Web site at www.kai.com to learn more about Assure and Guide.

